Toxic Floods of the Coeur d'Alene

A confluence of two rivers & a confluence of two histories: logging and mining

When the two federal plans for the Coeur d'Alene watershed — EPA's Superfund cleanup plan and the U.S. Forest Service's forest plan for the Coeur d'Alene National Forest — are blind to each other. Poster developed by John Osburn, MD for the tour of the Coeur d'Alene Basin by the National Academy of Sciences review committee, April 14, 2004

High blood lead levels in the lower basin have been associated with human events that flooded in 1996, and recreational activities outside the home (Gonzales and Urbina 2001).

**Reclamation—Periodic flooding can rejuvenate previously sedimented areas where flooding waters have caused erosion and subsequent sedimentation of contaminated sediments. This is a particular concern for community recontamination in smaller basin communities. Many of these communities do not have surface water control systems e.g., curbs, gutters, and drains that effectively control runoff during new~

According to the EPA, the tailings ponds were believed to be the source of the lead contamination. The tailings ponds were filled with material that had been used to mine gold. Lead is a byproduct of gold mining and was released into the environment through the process of mining.

Mine tailings are a major source of lead pollution in the basin, and many of the areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.

The impacted mid-floodplain sediments, in particular those where the "River of Green and Gold" met the "River of Black and Gold," are the major source of metals in basin waters. The many areas of concern from the mining legacy are due to these tailings. The lead from the mine tailings is released into the environment through natural processes such as wind and water. The lead then accumulates in the sediment and is transported downstream to the river and lake system, where it can be ingested by aquatic life and ultimately reach humans through food chains.

The U.S. Geological Survey has been monitoring lead levels in the basin since the early 1990s. The lead levels have been found to be higher in areas that are closer to the mine tailings, such as in the river and lake sediments.